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Abstract

This paper presents a highly ef cient, very accurate re-
gression approach for face alignment. Our approach has
two novel components: a set of local binary features, and
a locality principle for learning those features. The loital
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a “shape-indexed” featur&[3]. The regression goes to the
next stage by adding St to St 1.

The feature mapping function' is essential in shape re-
gression. In previous works, it is either designed by hand
[37] or by learning p, 3]. The process inj7] simply us-
es SIFT features for feature mapping and trais by a

principle guides us to learn a set of highly discriminative linear regression. While this simple approach works well,
local binary features for each facial landmark independent the handcrafted general purpose features are not optimal fo
ly. The obtained local binary features are used to jointly speci c face alignment. In contrast, the processesirs]
learn a linear regression for the nal output. Our approach jointly learn both t andW! by a tree-based regression, on
achieves the state-of-the-art results when tested on the cu the whole face region in a data-driven manner.
rent most challenging benchmarks. Furthermore, because
extracting and regressing local binary features is computa : .
tionally very cheap, our system is much faster than pre|?/iousbener be_causg '.t Iea_rns task—s_p_em C features. Howe\ser, a
methods. It achieves over 3,000 fps on a desktop or 300 fpgeported n existing IlteraFure, itis only on par with theap .
on a mobile phone for locating a few dozens of landmarks. proach usinga hand-designed SIFT feature..We believe this
is due to two issues caused by the overly high freedom of
t. The rstis a practical issue. Using the entire face region
as the training input results in an extremely large feature
pool, which translates into unaffordable training costsef
want to learn the most discriminative feature combination.
The second is a generalization issue, which is more crucial.
Discriminative shape regression has emerged as theThe large feature pool has many noisy features. This can
leading approach for accurate and robust face alignmenteasily cause over tting and hurt performance in testing.
[5, 11,12, 29,4, 32, 3, 27]. This is primarily because these
approaches have some distinct characteristics : 1) they ar
purely discriminative; 2) they are able to enforce shape con
strain adaptively; 3) they are capable of effectively lexer
ing large bodies of training data.

In principle, the latter learning-based approach should be

1. Introduction

In this work, we propose a better learning based ap-
eproach. It regularizes learning with a “locality” princel
This principle is based on two insights: for locating a cer-
tain landmark at a stage, 1) the most discriminative texture
information lies in a local region around the estimated fand
mark from the previous stage; 2) tisbape contexfloca-
tions of other landmarks) arldcal textureof this landmark
provide suf cient information. These insights imply thagéw
may rst learn intrinsic features to encode the local tegtur
for each landmark independently, then perform joint regres
sion to incorporate the shape context.

The shape regression approach predicts facial sBape
in a cascaded mannetf, 5, 4, 32, 3]. Beginning with an
initial shapeS?, S is progressively re ned by estimating a
shape increment S stage-by-stage. In a generic form, a
shape increment St at stagé is regressed as:

s

— Wt t |,St 1 : (1)
wherel is the inputimageS' ! is the shape from the pre-
vious stage, ! is a feature mapping function, ani® is a
linear regression matrix. Note that depends on both

andS' . The feature learned in this way is referred to as

We propose the following two types of regularization for
learning t:

tis decomposed into a set of independent local fea-
ture mapping functions, i.e.* = [ %; L5 L1(L
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Figure 1. Overview of our approach. In the training phasebegin by learning a feature mapping functioh(l; ; S 1 to generate local
binary features. Given the features and target shape irtrsin S = S! g, we learn alinear projectiow'' by linear regression.
In the testing phase, the shape increment is directly presdiend applied to update the current estimated shape.

is the number of landmarks). mobile phone. To the best of our knowledge, this is the

rst approach that is several times faster than real-tinoe fa
Each | is learned by independently regressitty  alignment approach on mobile phone. This opens up new
landmark, in the corresponditggcal region. opportunities for all online face applications.

The proposed regularization can effectively screen out
the majority of noisy or less discriminative features, reelu 2. Related Works
learning complexity, and lead to better generalization.

Active Appearance Models (AAM)7] solves the face
alignment problem by jointly modeling holistic appearance
and shape. Many improvements over AAM have been
proposed 19, 18, 14, 15, 25, 28]. Instead of modeling
holistic appearance, “Constrained Local Moded} 9, 10,

1, 35, 29, 34, 26] learns a set of local experts (detectors
[9, 31, 24, 1, 34] or regressors]0, 29, 11]) and constrain-

s them using various shape models. These approaches are
better for generalization and robustness.

To learn each |, we use ensemble trees based regres-
sion toinducebinary features. The binary features encode
the intrinsic structure in a local region, for predicatig t
landmark position. After concatenating kltal binary fea-
turesto form the feature mapping!, we discriminatively
learnW! for global shape estimation. We nd that our two-
step learning process (local binary features and globedtin
regression) is much better than the one-step joint leafing

tandW! by tree-based regression if [3].
In addition to better accuracy, our approach is also much[5, Ollir lv;farzkg, b:'gg?z] tga::georsyr_]ai))(?or:gg:e;,sl[ogg] a;)p;groach

bm;r: de;;::je?]t_. hl?eca:feethtiéoc;lct;maroyf f:a;trl;rg[snarznt(;e;?ict shape increment by applying linear regression on SIFT
sea Ighly sparse, P SsS of ex N9 features. Both Caet al. [5] and Burgos-Artizziet al. [3]
gressing such features is extremely rapid. We show that

use boosted ferns (a kind of tree) to regress the shape incre-

fast version of our approach runs at 3,000+ frames per S€Chent. We note that the ensemble tree-based methods (either

ond (FPS) on a single-core deskiop and achieves COMPparg, , osted trees or random forest) can also be viewed as a lin-

Eilgnr‘?jﬁgsal’vggoﬁgg;:g_grtanézzdsau?erfg(r),;n;aslt;g: ear summation of regressors using binary features induced
of-the-art equivalents in termsg,J of accuyrac F:)n a variety of by the trees, yet, our feature leaming method differs from
q y y previous tree based methods.

benchmarks. The high speed of our approach is crucial for
scenarios and devices where computational power is limit- Ensemble trees can be used as a codebook for ef cient
ed and computational budget is a major concern. For ex-encoding PZ] or learning better descriptors,[33]. En-
ample, our fast version still runs at 300 FPS on a modernsemble trees have recently been exploited for direct featur
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mapping to handle non-linear classi catiof] 16]. In this (a)
work, we demonstrate the effectiveness of ensemble tree:
induced features in shape regression.

o3 ,
[ s r r ] s
3. Regressing Local Binary Features
(b)
)

In Equation (), both the linear regression matki¢' and & | - &&& _
the feature mapping function are unknown. In our ap- ) /O
proach, we propose learning them in two consecutive steps [s r tres forrorls ra

We rst learn a local feature mapping function to generate

local binary features for each landmark. We concatenate allrigure 2. Local binary features. (a) The local feature magpi
local features to get'. Then we learnW! by linear re- function | encodes the corresponding local region into a binary
gression. This learning process is repeated stage-bg-stagfeature; all local binary features are concatenated to foigh-

in a cascaded fashion. Figuteshows the overview of our dimensional binary features. (b) We use random forest dstiaé
approach. mapping function. Each extracted binary feature indicatesther
the input image contains some local patterns or not.

3.1. Learning local binary features *
wherew| is a2-by-D matrix in which each column is the

The feature mapping function is composed of a set of 2D vector stored in the corresponding leaf node, gnis a

local feature mapping functionsi.e.! = §; b L. D -dimensional binary vector. For each dimension finits
We learn each of them independently. The regression targevalue is 1 if the test sample reaches the corresponding leaf
for learning ! is the ground truth shape incremengt: node and O otherwise. Thereforg,is a very sparse binary
vector. The number of non-zero elements jris the same
X . b
min K| éit w |i;Sit 12 ) as the number of trees in the forest, which is much smaller
LU thanD. We call such {s “local binary feature’ Figure 2

illustrates the process of extracting local binary feagure
wherei iterates over all training samples, operatprex-
tracts two element&l  1;2l) from the vector &, and 3.2. Learning global linear regressionw !
| § isthe ground truth 2D-offset dth landmark inith
training sample. After the local random forest learning, we obtain not on-
ly the binary features!, but also the local regression output

We use a standard regression random fordsiof learn . X .
w;. We discardsuch learned local outpwy;. Instead, we

each local mapping functiorf. The split nodes in the trees X .
are trained using the pixel-difference featused]. To train concgtenztate the binary features to a global fe?ture mapping
each split node, we test 500 randomly sampled features andunction * and learn a global linear _prO_JeCt"W by min-

pick the feature that gives rise to maximum variance reduc- Mizing the following objective function:

tion. Testing more features results in only marginal im-

provement in our experiment. After training, each leaf n-  min k&' w! '(I;;S! HKkd+ jjwljiz  (4)

ode stores a 2D offset vector that is the average of all the W' i

training samples in the leaf. where the rst term is the regression target, the second term

We only sample pixel features in a local region around is a L2 regularization oW!, and controls the regular-
the landmark that is estimated. Using such a local region isization strength. Regularization is necessary because the
critical to our approach. In the training, the optimal regio  dimensionality of the features is very high. In our exper-
size is estimated in each stage via cross validation. We williment, for 68 landmarks, the dimensionality of could
discuss more details in Secti@rB. be 100K+. Without regularization, we observe substantial
. . - over tting. Because the binary features are highly sparse,
During testing, a sample traverses the trees until it reach—We use a dual coordinate descent methiid fo deal with
es one leaf node for.each tree. The output Of. the randomsuch a large-scale sparse linear system. Since the olgectiv
forest is the sur_nmatlon of the outputs stored in these Ieaffunction is quadratic with respect /!, we can always
nodes. Supposmg_the total number of leaf nodd3 ishe reach its global optimum.
output can be rewritten as:

We nd that such global “relearning” or “transfer learn-

wh st (3) ing” signi cantly improves performance. We believe this is
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Figure 3. The horizontal axis stands for the local regioriusd
The vertical axis stands for the alignment error on a testgemn

left to right, standard deviation of the distribution of are 0.05,
0.1, 0.2. Herein both local region radius and alignmentreigo
normalized by the size of face rectangle.

Figure 4. The best local region sizes at stage 1, 3, and 5.

ber of features tested in training forests), it is more éiffec
to only consider candidate features in a local region irstea
of the global face image.

for two reasons. On one hand, the locally learned outputby |4 our cascade training, at each stage, we search for

random forest is noisy because the number of training sam+ne pest region radius (from 10 discrete values) by cross-

ples in a leaf node may be insuf cient. On the other hand, yajigation on an hold-out validation set. Figufeshows

the global regression can effectively enforce a global éhap he pest region radiuses found at stage 1, 3, and 5. As

cons_traint and reduce local errors caused by occlusion an‘%xpected, the radius gradually shrinks from early stage to

ambiguous local appearance. later stage, because the variation of regressed face shapes
decreases during the cascade.

3.3. Locality principle Why a single landmark regression?lt may appear that

independent regression of each landmark is sub-optimal.
For example, we could probably miss a good feature that
can be shared by multiple landmarks. However, we argue
that local regression has a few advantages over the global
learning such as ir.

As we have described previously, we apply two impor-
tant regularization methods in feature learning, as guiyed
a locality principle: 1) we learn a forest for each landmark
independently; 2) we only consider the pixel features in the
local region of a landmark. In this section, we explain why
we made such choices. First, the feature pool in local learning is less noisy.
There may be more useful features in global learning. But
the “signal-to-noise ratio” in global learning could be lexy
which will make feature selection more dif cult.

Why the local region? We begin with the second
choice. Suppose we want to predict the offset of a s-
ingle landmark and we select features from a local region
with radiusr. Intuitively, the optimal radius should de- Second, using local learning does not mean that we do
pend on the distribution of s. If s of all training samples  local prediction. In our approach, the linear regression in
are scattered widely, we should use a largetherwise we  the second step exploits all learned local features to make a
use a small one. global prediction. Because the local learning of landmarks
is independent, the resulting features are by nature mere di
verse and complementary to each other. Such features are
more appropriate for global learning in the second step.

To study the relationship between the distribution of
and the optimal radius for a landmark we synthesize train-
ing and test sample regions whosa follow a Gaussian
distribution with different standard deviations. For edidt Last, the local learning is adaptive in different stages. In
tribution, we experimentally determine the optimal region the early stage, the local region size is relatively large an
radius (in terms of test error) by training regression ftwes a local region actually covers multiple landmarks. The fea-
on various radii. We use the same forest parameters (tregures learned from one landmark can indeed help its neigh-
depth and number of trees) as in our cascade training. Weboring landmarks. In the late stage, the region size is small
repeat this experiment for all landmarks and take the aver-and local regression ne-tunes each landmark. Local learn-
age of the optimal region radius. ing is actually more appropriate in the late stage.

Figure 3 shows the results of three distributions whose  Note that we do not claim that global learning is infe-
std. are 0.05, 0.1, and 0.2 (normalized distance by face rectrior to our local learning by nature. We believe that local
angle size). The optimal radiuses are 0.12, 0.21 and 0.39learning delivers better performance mainly due to prattic
The results indicate that the optimal region radius is atmos reasons. Given limited training capability (the amount of
linearly to the standard deviation ofs. Therefore, we can  training data, affordable training time, available conipgt
conclude that, given limited computation budget (the num- resources, and power of learning algorithm), the local ap-



proach can better resist noisy features in the global featur 4.1. Comparison with state-of-the-art methods

pool, which is extremely large and may cause over tting.

We hope our empirical ndings in this work can encourage  During our training, we use similar data augmentation

more similar investigations in the future. as in [] to enlarge the training data and improve general-
ization ability: each training image is translated to multi
ple training samples by randomly sampling the initial shape
multiple times. Note that during testing we only use the
mean shape as the initialization. We do not use multiple

) initializations and median based re nement asfh [
4. Experiments

Our approach has a few free parameters: the number of
DatasetsThere are quite a few datasets for face align- St29esT , the number of trees in each stagé, and the tree
ment. We use three more recent and challenging ones. Thef!€PthD . To test different speed-accuracy trade-offs, we

present different variations in face shape, appearance, an US€ WO sets of settings: 1) more accurafe= 5;N =
number of landmarks. 1200 D =7;and 2) faster:T =5;N =300;D =5). We

call the two version&BF (local binary features) andBF
LFPW (29 landmarks) 1] is collected from the web. As  fast

some URLs are no longer valid, we only use 717 of the ) _ )
1,100 images for training and 249 of the 300 images for ~Our main competitors are the shape regression based
testing. Although each image is labeled with 35 landmarks, M&thods, including explicit shape regression (ESRapd

we use 29 of 35 landmarks in our experiments, following SUPervised descent method (SDM)Z]. We implement
previous work f]. these two methods and our implementation achieves com-

parable accuracy to that which was reported by the original
Helen (194 landmarks)17] contains 2,300 high resolu-  authors. For comparison with other methods, we used the o-
tion web images. We follow the same setting inJf 2000 riginal results in the literature. Tablereports the errors and
images for training and 330 images for testing. The high speeds (frames per second or FPS) of all compared methods
resolution is bene cial for high accuracy alignment, but th  on three datasets. Note that we also divide the testing set of
large number of landmarks is challenging in terms of com- 300-W into two subsets: the common subset consists of the
putation. testing sets of Helen and LFPW, and the challenging IBUG

300-W (68 landmarks) is short for 300 Faces in-the- subset. We report all results on the two subsets as well.

Wild [27]. It is created from existing datasets, including  Comparison of accuracyOverall, the regression-based

LFPW [1], AFW [35], Helen [L7], XM2VTS [2(], and @  approaches are signi cantly better than ASM-based meth-
new dataset called IBUG. It is created as a challenge andods. Our proposed approach LBF wins by a large margin
only provides training data. We split their training dateoin  over all datasets. Our faster version is also comparable wit
two parts for our own training and testing. Our training set the previous best. Speci cally, our method achieves signif

consists of AFW, the training sets of LFPW, and the train- jcant error reduction with respect to ESR and SDM of 30%
ing sets of Helen, with 3148 images in total. Our testing and 22%, respectively, on the challenging IBUG subset. We
set consists of IBUG, the testing sets of LFPW, and the test-pelieve this is due to the good generalization ability of our
ing sets of Helen, with 689 images in total. We do not use method. In Figure’-9, some example images and com-

images from XM2VTS as it is taken under a controlled en- parison results from IBUG are shown. Note that the per-

vironment and is too simple. We should point out that the formance on LFPW is almost saturated, because the human
IBUG subset is extremely challenging as its images haveperformance is 3.28 as reported i}.[

large variations in face poses, expressions and illunonati )
s, Comparison of speedOur approach, ESR, and SDM are

all implemented in C++ and tested on a single core i7-2600

Evaluation metric Following the standardlf 5], we  CPU. The speed of other methods is quoted from the orig-
use the inter-pupil distance normalized landmark error. Fo inal papers. While ESR and SDM are already the fastest
each dataset we reportthe error averaged over all landmarksace alignment methods in the literature, our method has a
and images. Note that the error is represented as a percengven larger advantage in terms of speed. Our fast version

age of the pupil-distance, and we drop the notatioim the is dozens of times faster and achieves thousands of FPS for

reported results for clarity. a large number of landmarks. The high speed comes from
In the following section, we rst compare our approach the sparse binary features. As each testing sample has only

against state-of-the-art methods, then validate the [z@gpo 1We x the total number of trees so few trees will be used forheac

approach via comparison with certain baseline methods.  landmark if there are more landmarks.



LFPW (29 landmarks) Helen (194 landmarks) 300-W (68 landmarks)

Method Error FPS  Method Error FPS Common Challenging

[1] 399 1 STASMp1 111 - Method  Fullset o oot subset O
ESR[] 3.47 220 CompASM[L7] 9.10 -

RCPRE] 3.50 - ESR[] 570 70 ESR[] 7.58 5.28 17.00 120
SDM[37] 3.49 160 RCPR[] 6.50 -

EGM[34] 398 <1 SDM[37] 585 21 SDM[32] 7.52 5.60 15.40 70
LBF 3.35 460 LBF 541 200 LBF 6.32 4.95 11.98 320
LBF fast 3.35 4200 LBF fast 5.80 1500 LBF fast  7.37 5.38 1550 3100

Table 1. Error and runtime (in FPS) on LFPW, Helen and 300-WAstds, respectively. The errors of ESR and SDM are from our
implementation. Note that ESR and SDM have reported err@F@\WV in the original papers. Their accuracy is similar asq@r43 and
3.47, respectively)

Error : Error
m Global Learning

13 - X 13 -
Local Learning

B Local Forest Regression
Tree Induced Binary Features

1 2 3 4 5 Stage 1 2 3 4

Figure 5. Comparison between local learning and globahlagr Figure 6. Comparison between tree induced binary featurds a
local forest regression.

11 +

5 Stage

a small number of non-zero entries in its high dimensional

features, the shape update is performed only a few times by

ef cient look up table and vector addition, instead of ma- g capable of nding much better features.

trix multiplication in the global linear regression. Thersu

prising|y h|gh performance makes our approach especia”y Tree induced binary features vs. local forest regres-
attractive for applications with limited computationabpo ~ sion. In the baseline method, we do not use the locally
er. For examp|e, our method runs in about 300 FPS on alearned hlgh dimensional binary features for gIobaI regres

mobile. This opens up new opportunities for online face sion. Instead, we directly use the local random forest's re-
applications on mobile phone. gression output (a 2D offset vector) of each landmark as

features to learn a global regression in the same way. Note
that the learning process of the local trees is also exactly
the same. Figuré shows that high dimensional binary fea-
tures clearly outperform the simple raw output from local
regression as features, because the former faithfulljneta
the full information of local learning.

4.2. Validation of proposed approach

We verify the effectiveness of the two key components of
our approachlocal learningandbinary featuresby com-
paring them with baseline methods that only differ in those
aspects but remain exactly the same in all others. We use
the 300-W dataset and LBF settings.

Local learning vs. global learning. In the baseline 5. Conclusion
method, the difference is that, during the learning of lo-
cal binary features, the pixels are indexed over the global In this work, we have presented a novel approach to
shape, in the same way &4,[instead of only in a local re-  learning local binary features for highly accurate and ex-
gion around the local landmark as in the proposed approachtremely fast face alignment. The shape regression frame-
Regression is performed on the entire shape instead of onlywork regularized by locality principle is also promising
the local landmark. All other parameters are the same tofor use in other relevant areas such as anatomic structure
ensure the same training effort. We call this baseijiobal segmentation and human pose estimation. Furthermore, it
learning Figure5 shows that the proposéatal learningis is worth exploring the re tting strategy in other scenarios
signi cantly better (25% error reduction) and veri es thiat ~ where regression trees are applied.
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Figure 8. Example images from the Challenging Subset of\80fataset where our method outperforms ESR and SDM. Thees aas

extremely dif cult due to the mixing of large head poses rerte lighting, and partial occlusions.
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Figure 9. Some failure cases from the Challenging Subsed@{\8 dataset.
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